The FM Synthesis of a Carillon Bell

Frequency Modulation Synthesis (FM)

The American composer John Chowning discovered that the frequency modulation
technique could also be used as a method for sound generation. Instead of
modulating a high frequency with a low-frequency audio signal, such as in radio
technology, Chowning used two audio signals: one as carrier (c), and one as
modulator (m). The carrier oscillator is gradually modulated equally upwards and
downwards by the modulator oscillator.

If this modulation happens slowly, we hear it as a siren or vibrato, depending on
the speed and depth of that modulation. However, modulations faster than 20
times per second can no longer be perceived as such. We now experience this
frequency modulation as a newly formed sound. Remarkable in the application of
frequency modulation for sound generation is that often the modulation frequency
is higher than the carrier or carrier frequency. Chowning applied an old known
principle for a completely new application, sound synthesis.

"1 + 1 = many"”

In this FM model, both oscillators produce a so-called pure tone, a sine wave, a
single frequency. According to Fourier's mathematical theory, however, it can be
shown that we have now obtained a resulting complex vibration consisting of a
multiplicity of frequencies: a fundamental frequency with overtones.

Herein lies the power and elegance of the FM model. Starting from only two
frequencies, sine waves, a hew complex oscillation is generated which, can
consist of a sum of many newly formed sine waves, created by the frequency
modulation principle.

Timbre: the dynamics of fundamental and overtones

Each periodic sound can be decomposed into a plurality of sinusoidal vibrations,
with associated frequency, amplitude and phase (which is of much less
importance). The vibration with the lowest frequency is called root, first
harmonic, or fundamental, the higher frequencies are called overtones, partials or
harmonics. Harmonics are called those overtones that concern a whole multiple of
the lowest frequency, the fundamental. Frequencies that are not integer multiples
of the fundamental are referred to as partials or inharmonic frequencies.

The pitch interval between carrier and modulator determines: which
overtones

The amount of frequency modulation determines: how many overtones
This is controlled by the amount of the modulator's vibration response. In other
words, by the amplitude, the output volume of the modulator. Overall, the
strength of the formed partials decreases upwards in the series.

Dynamics: oscillator plus envelope generator

Each oscillator, both carrier and modulator, is equipped with a so-called envelope
generator, which regulates the dynamics. The output level, the amplitude, can
thus be controlled independently for each oscillator.

Velocity and key scaling

The output level can also be influenced by the velocity of a key on a keyboard.
The envelope generator of the carrier thus determines the actual audible signal,
the ultimate loudness. The modulator envelope controls the course of the timbre.
The time segments of these two envelopes can be scaled on the basis of the
pitch, which key on the keyboard. The importance of these envelopes can hardly
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be overestimated. Together with the spectrum, which overtones, they are very
decisive for the ultimate sound identity.

The upper sideband frequencies

We obtain the upper sidebands as follows. We take the carrier number and add
the modulator number to it. Then we add the modulator number to that result.
Then again, again, and so on. For a c:m ratio of 2:7 as in the 'Tubular Bell' preset
in the DX7, this produces frequencies with the following ratios:

(2+7=)9,(9+7)=16, (16 + 7) = 23, (23 + 7) = 30

The lower sideband frequencies

In a similar way we find the lower sidebands.

First we subtract the modulator number from the carrier number. As a result for
the difference frequency we now get -5. Then we neglect the minus sign. Then we
repeat the same procedure as in the calculation of the upper sidebands. We then
obtain the following frequencies:

(12-71)=5,(5+7)=12, (12 +7) =19, (19 + 7) = 26

It is also remarkable that the modulator frequency itself is lacking in the formed
sound, as well as all multiples of it.

With all frequency ratios in sequence, we obtain the following overtone spectrum:
2 5 9 12 16 19 26 30

The lowest frequency '2' is the reference for our perception, or in other words: we
experience it as the fundamental tone. This is interpreted by our perception as a
'1'. Therefore, everything divided by 2:

1 2.5 4.5 6 8 9.5 13 15
This corresponds to the following relative tone sequence on C4:
C4 ES5 D6 G6 C7 D#7 A7 B7

A spectrum with clearly a mixture of on the one hand harmonic sub-tones, the
whole numbers, and on the other hand the inharmonic sub-frequencies, the tones
with decimal numbers. From psycho-acoustics we know that a consonance of
harmonic overtones tends towards 'fusion’ to an indivisible sound with
unambiguous pitch.

Fusion increases as the ratio numbers of the constituent frequencies are small
and they form a closed series. In this example, the harmonics in the spectrum, 1,
6, 8, 13 and 15 will not really merge into an integer sound because of the lack of
the lower harmonics on the one hand and, on the other hand, by the large
numbers for the higher overtones. The fact that they do not form a closed series
also contributes to this.

In short, the result produces an unmistakable bell-like sound with characteristics
of fusion: a clear unambiguous pitch impression. But also with characteristics of
'splitting': in addition to that unambiguous pitch experience, we also hear several
more or less independent tones with one that clearly stands out. That is in this
case the first overtone (2.5), which is a major tenth above the strike tone.

The FM Synthesis of a Carillon Bell ©1985/2018 Ernst Bonis

7



Sound characteristics of a carillon bell

The strike tone

An important perception aspect of a carillon bell is the so-called strike tone. That
is the metallic sound at the moment of the attack that determines the pitch
impression. Remarkably, this pitch sensation does not necessarily have to match
one of the partial tones or the fundamental tone.

It is a psychoacoustic phenomenon. If we simultaneously hear pure tones, sine
tones, with simple, or approximate, harmonic frequency relationships, our
perception will experience a pitch sensation on the greatest common denominator
of these relationships. (This phenomenon is called residual pitch, or also called
'missing fundamental'. It was discovered in 1939 by the Dutch biophysicist Jan
Schouten.) At the moment of attack the octave, the fifteenth and the triple
octave sound loud, which form a frequency ratio of 2:3:4. The pitch we now
experience is the (virtual) 1. This is the pitch after which we name the bell.
However, the fundamental is one octave lower.

The overtone spectrum

In the table 'Sound analysis of a carillon bell' we see the constituent partials from
1 to 40. A number of bell partials have been given fixed names in the carillon
world, these are also included in the table. In addition, we see the initial volume
at the attack and the right column gives an impression of the relative decay
times.

The strongest overtones are bold, which of course suggests that these are also
the most important for the sound identity. If we hear such a bell at a great
distance, it is still unmistakably a bell, while only the very strong partial
frequencies are heard, the others are not perceived, they are below the hearing
threshold because of the large listening distance.

The loudest frequencies in the carillon bell spectrum

(After André Lehr from: 'Leerboek der Campanologie')

Respectively the frequency ratio (idealized rounded), the partial name, the pitch
(with omission of the deviation in cents), the initial loudness and the decay time.

Frequency ratio Partial Name Pitch Volume Decay time%
1 fundamental C4 mf 100%

2 prime C5 f 55

2.38 minor third D#5 f 75

4 octave C6 fff 30

6 fifteenth G6 ff 20

8 double octave Cc7 f 15

11 fourteenth F7 mf 10

13 A7 mp 7.5

16 triple octave Cc8 mp 5

Piet van Egmond realized bell imitations on the organ in the sixties of the last
century. In the table below we see that he used only four organ stops for this
purpose. Two very overtone-poor stops, wide open flutes for fundamental and
minor tenth, and two overtone-rich stops, diapasons for the octave and the
fifteenth. Together with the reverberation in the church and the way of playing:
keynote and minor tenth sustained and provided with tremulant and rhythmically
played as 'bim-bam’, that delivered, certainly in that time, spectacular results.
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The combination of stops Piet van Egmond used as bell imitation on the
organ (according to my own aural analysis)

fundamental C4 wide open flute
minor third D#5  wide open flute
octave C6 diapason
fifteenth G6 diapason

Van Egmond's abstraction emphasizes once again the very characteristic aspect
of the minor third (above the strike tone) in the sound.

A simple FM bell synthesis

A simple solution for an FM bell simulation consists of four oscillators: two times a
pair: carrier and modulator. Both carrier outputs are simply mixed together in the
desired ratio. One pair with c: m ratio 1:3 and another pair with c: m ratio
2.38:8.38. (If we simplify this last ratio, there is actually 1:3.52, which is very
similar to the ¢c:m ratio 1:3.5 (simplification of 2:7) as we already encountered in
the DX7 preset 'Tubular Bell'. ) Both spectra therefore show a large degree of
similarity, however the spectrum formed by the c: m ratio 2.38:8.38 is in its
entirety a minor tenth (1:2.38) higher than the spectrum formed by c: m ratio
1:3.

The sideband frequencies generated by a FM pair with a c: m ratio of 1:3

Partial ratio Offset: semitones.cents Note name.cents Name bell partial
1 0 c4 fundamental
2 12 C5 prime

4 24 cé octave

5 27.86 E6 -14 | major tenth

7 33.69 A#6-31

8 36 c7 double octave
10 39.86 E7 -14

11 41.51 F#7-49

13 44.40 A7 +40

14 45.69 A#7-31

16 48 Cc8 triple octave
17 49.05 C#8 +5

19 51 D#8

20 51.86 E8 -14

22 53.51 F#8-49

The pair with the ratio 2.38: 8.38 results in the following two lowest sub-
frequencies: the carrier itself, 2.38 and the first difference frequency, 6. Partial
2.38 is now the minor tenth in the spectrum. In clockwise terms the minor third
mentioned because it is a minor third above the tone, the virtual '1'. (Ideally, the
pitch of the strike tone will coincide with that of the prime.) An overtone with a
ratio of 6 is the fifteenth in the bell sound. In the table below you will also find
the other formed partial frequencies.

The sideband frequencies formed by an FM pair with a c: m ratio
2.38:8.38

Partial ratio Offset: semitones.cents Note name.cents Name bell partial
2.38 15 D#5 minor third

6 31.02 G6 +2 fifteenth

10.76 41.13 F7 +13 double fourteenth
14.38 46.15 A#7 + 15

19.14 51.10 D#8 + 10

22.76 54.10 F#8 + 10
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27.52 57.39 A8 +39

31.14 59.53 Co -4
35.90 62 D10
39.52 63.65 E10 -35

The combination of these two above-mentioned spectra yields a total sound that
is very similar to the sound of a real carillon clock. The fifth is missing, but that is
not so striking because of the modest loudness mp. And instead of a B6 we see
and A#6 in the spectrum.

The two spectra combined: the 4-oscillator FM bell synthesis

Partial ratio Offset: semitones.cents Note name.cents Name bell partial
1 0 c4 fundamental
2 12 C5 prime

2.38 15 D#5 minor third
4 24 Cé octave

5 27.86 E6-14 major tenth
6 31.02 G6 +2 fifteenth

7 33.69 A#6-31

8 36 c7 double octave
10 39.86 E7 -14

10.76 41.13 F7 +13

11 39.51 F#7-49

13 44.40 A7 +40

14 45.69 A#7-31

14.38 46.15 A37 + 15

16 48 Cc8 triple octave
17 49.05 C#8 +5

19 51 D#8

19.14 51.10 D#8 + 10

20 51.86 E8 -14

22 53.51 F#8-49

22.76 54.10 F#8 + 10

27.52 57.39 A8 +39

31.14 59.53 C9o -4

35.90 62 D9

39.52 63.65 E9 -35

A more convincing simulation can be obtained by extension with an additional FM pair
carrier and modulator with a c:m ratio of 2:6. This results in a frequency spectrum that is
one octave higher than the spectrum formed. by c:m = 1:3. In part this results in the
same partial frequencies, which overlap and are emphasized (marked green).

The sideband frequencies that are formed by an FM pair with c:m ratio
2:6

Partial ratio Offset: semitones.cents Note name.cents Name bell partial
2 12 C5 prime

4 24 c6 double octave

8 36 c7 triple octave

10 39.96 E7 -14

14 45.69 A#7-31

16 48 C8 quadruple octave
20 51.86 E8 -14

22 53.51 F#8-49

26 56.40 A8 +40

28 57.69 A#8-31

32 48 co

34 61.05 C#9 +5

38 63 D#9

40 63.86 E9 -14

44 65.51 F#9-49
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The three spectra combined: the 6-oscillator FM bell synthesis

Partial ratio Offset: semitones.cents Note name.cents Name bell partial
1 0 c4 fundamental
2 12 C5 prime

2.38 15 D#5 minor third
4 24 C6 octave

5 27.86 E6 -14 major tenth
6 31.02 G6 +2 fifteenth

7 33.69 A#6 -31

8 36 Cc7 double octave
10 39.86 E7 -14

10.76 41.13 F7 +13 double fourteenth
11 39.51 F#7-49

13 44.40 A7 +40

14 45.69 A#7-31

14.38 46.15 A#7 + 15

16 48 C8 triple octave
17 49.05 C#8 +5

19 51 D#9

19.14 51.10 D#9 + 10

20 51.86 E9- 14

22 53.51 F#9 -49

22.76 54.10 F#8 + 10

26 56.40 A8 +40

27.52 57.39 a5 +39

28 57.69 A#5 -31

31.14 59.53 Co -4

32 60 co

34 61.05 C#9 +5

35.90 62 D9

38 63 D#9

39.52 63.65 E9 -35

40 63.86 E9 -14

44 65.51 f#6-49

For comparison, a sound analysis of a physical carillon bell

Partial number  Partial name Pitch.offset cents Volume Decay time %
1 fundamental C4 +31 mf 100
2 prime C5 +31 f 55
3 minor third D#5 + 40 ff 75
4 fifth G5 +23 mp 20
5 octave C6 +31 fff 30
6 major tenth E6 +58 p

7 1st fourteenth F6 -34 p

8 2nd fourteenth  F6 -14 p

9 fifteenth g3 +9 ff 20
10 A6 +2 pp

11 B6 +32 pp

12 double octave C7+091f 15
13 C#7 + 13

14 C#7 + 22

15 D7 +45

16 D#7 + 29

17 E& +60

18 double fourteenth F7 +56 mf 10
19 F#7 + 57

20 F#7 + 64

21 G7 +11

22 G7 +31

23 G#7 + 65

24 A7 +18

25 A7 +46 mp 7.5
26 A#7-7

27 A#7 + 16

28 A#7 + 36
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29 B7 -6

30 B7 +53
31 C8 -30
32 C8 -11
33 C8 +17
34 triple octave C8 +82 mp 5
35 C#8 + 12
36 C#8 + 37
37 C#8 + 58
38 C#8 + 60
39 D8 -4

40 D8 +29

After André Lehr from: 'Leerboek der Campanologie'
The analysis was based on a bell with the fundamental G#1+31 cent. For the sake of simplicity, and
comparison with the other tables, I transposed the entire spectrum up to C4)
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