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Deceptive Overtones 
 
One spectrum: three different sounds; and why the size of 
the Tubular Bells is usually within two octaves. 
 
The missing fundamental 
The fundamental is missing, and yet you hear it! For example, if you 
play music and listen on your laptop or on the mini multimedia 
speakers of your desktop computer. You hear it all fine, while the 
format of the speakers already indicates that there is no or hardly any 
bass. 
 
How did that happen? The fundamental may be removed by the 
filtering effect (high pass) of the mini speakers, the higher overtones 
are displayed. 
 
In the case of sounds of wind and string instruments, this concerns 
harmonic overtones. Frequencies that are an integer multiple of the 
fundamental frequency. Because of this harmonic relationship, the 
starting points of these sine wave vibrations coincide at certain 
moments. 
 
Let's take the example below of two frequencies in the ratio of 2 to 3, 
so a fifth interval. It becomes more insightful when we transpose this 
frequency ratio down to the time domain. We have then transformed 
these two simultaneous sounding frequencies, a fifth interval, to a 
rhythm: 2 to 3 to be precise as schematically shown below: 
 
(3) x   x   x   x   (right) 
 
(2)  x     x   x  (left) 
 

(P)  x       x  (r & l) 
 
The time axis represents from left to right. The top line shows that 
there are three events (x) in the same time as two of them on the 
middle line. The bottom line indicates where both come together. 
 
Where these two coincide, a new regularity arises, a new periodicity. 
You can find these on the highest common denominator (GGD) of the 
two periodicities (Jan Schouten, 1939). If you play this rhythm with 
both hands, this new periodicity arises where both hands together 
make a stroke movement at the same time. 
 
In the pitch domain this is called virtual pitch, missing fundamental or 
residual pitch. Back to the sounding example of the fifth interval: the 
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virtual pitch experience will now be one octave lower than the lowest 
tone of the fifth sound. 
 
Missing Fundamental 
Load Mis-Fundament.pch2. In this patch you can hear 8 different 
examples of virtual pitch, missing fundamental. All sample sounds are 
additive made up of four constituent frequencies that are generated 
with 4 OscCs. These are mixed in a mixer module, Mix4-1B. 
 
As an extra, there is a fifth oscillator Osc-C connected to the mixer 
that you can use as a reference for comparison. The combined 
oscillator signals go to a FiltNord module in Low Pass mode. This filter 
is controlled by a decaying envelope, EnvADR. This simulates an 
decaying sound: After the attack, the filter frequency is modulated 
down by the envelope output, with the result that first the higher 
overtones disappear and the lower ones later. 
 
Variations 1 to 5 show successively the missing fundamental built up 
from respectively higher successive partial frequency ratios. 
 
Variations 6 and 7 provide examples of the missing fundamental made 
up of only odd harmonics. The final example, variation 8, shows that 
the missing fundamental also arises even when the constituent 
frequencies are quasi-harmonic: the frequency ratios are an 
approximation of 2, 3, 4 and 5 (1.9946, 2.9966, 4.0254 and 5.0397). 
 
Our perception is apparently looking for (approximate) harmonic 
frequency relationships. Sounds composed of (quasi) harmonics result 
in fusion, an indivisible identity with unambiguous pitch, as is the case 
with sounds of wind and string instruments. 
 
Plucked tubes and bars: one spectrum, three different sounds, three 
different pitches !? 
The spectrum of an excited tube or bar, the ratios of the first seven 
resonance frequencies: 1, 2.76, 5.40, 8.93. 13.34, 18.84, 31.87. 
These frequency ratios appear superficially random. Load the Tube-
Bar-Spectrum.pch2 patch and listen to this mix of frequencies. 
 
Play this patch chromatically up and down over at least four octaves 
and be amazed at what happens with pitch and timbre perception. You 
don’t hear a consistent pitch and a fixed timbre over the entire range. 
 
This sound simulation, however, is a true-to-life reproduction of the 
natural frequencies of an excited rod or tube with free ends. The only 
difference with reality is that in this synthesis all frequencies show the 
same amplitude. In the real tube chime or rod game, this is related to 
the length of the rod or tube and the mallet used: soft-hard, large-
small. A large soft mallet will mainly activate the low resonant 
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frequencies, a small hard mallet mainly the higher natural frequencies. 
With a very long tube the absolute frequency spectrum will be (much) 
lower than with a very short tube or rod. 
 
In the patch I intentionally gave all partials the same amplitude. This 
makes it all the more clear that the loudness of the sub-tones plays an 
important role in the pitch and timbre perception of the sound. Our 
hearing is most sensitive to frequencies between 3000 and 4000 Hz. 
That means that depending on whether we play a high or low tone, 
certain partial tones fall into this most sensitive area. 
 
For a very high tone played on our virtual mallet instrument, it is the 
lowest frequency that sounds the loudest. We experience this as 
'fundamental' and determine the pitch. 
 
However, if we play a very low tone on the virtual keyboard, it is 
precisely the higher overtones that fall in the most sensitive frequency 
range. 
The table below shows that more or less three different perception 
models can play a role, depending on which sub-frequencies fall into 
the most sensitive part of our hearing. 
 

 
Eigenfrequenties of a tube with free ends 
1   2.76  5.40  8.93  13.34   18.64   31.87 1) 
Glockenspiel model 

1 2.76  5.40  8.93  13.34  18.64   31.87 
 
 
Eigenfrequenties of a tube with free ends 
1  2.76  5.40  8.93  13.34   18.64  31.87 
2) Ambigu model 
0.36 1  2  3.23  4.83  6.75  11.55 

 
 
Eigenfrequenties of a tube with free ends 
1 2.76  5.40  8.93  13.34   18.64  31.87 
3) Tubular Bells model 
0.21 0.6 V1 1.2  2  3  4  7 
 
 
  The Glockenspiel model 

With short rods or tubes as we find them in the bar games from the 
Orff school musical instruments, we interpret the sound via the 
Glockenspiel model. The lowest partial acts as a 'fundamental'. The 
higher overtones only play a supporting role with a coloring effect. 
 
The Tubular Bell model 
Now the other extreme. For example, the tubular bells from the 
orchestral instruments. The tubes are relatively long with this 
instrument. The partial tones that fall in the most sensitive frequency 
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range are now the partials 4, 5, 6 and 7. If we take a closer look at the 
frequency ratios of these partial tones, we see that they show 
approximately proportions 2:3:4:7. Approximately integer multiples of 
a virtual frequency with a ratio of approximately 4.5. That is the pitch 
at which we experience the sound (v1). 
 
Minor third 
The other partial tones, number three with ratio number 5.4, is about 
a minor third higher than the virtual root (4.5) (4.5 is up to 5.4 is 
about 5 to 6, or simplified 1:1.2.) This minor third is an important 
characteristic of the (carillon) bell sound. 
 
The second partial of the spectrum with a ratio of 2.76 appears to be 
about one octave lower than the third partial 5.40. We experience this 
partial as the low humming tone which also occurs in the real bell 
sound. Be it that in the real bell this humming tone is one octave lower 
than the 'strike tone'. 
 
The lowest partial frequency of the tubular bell is so low and weak that 
it is negligible for the perception. A long time ago, experimenting in 
the percussion room of the Rotterdam Conservatoire, it turned out 
that you could obediently detect this lowest partial frequency by 
hearing the ear very close to the end of the tube. 
 
The Ambigu model 
For pitches played in the middle of our virtual keyboard, both the 
timbre and the pitch are rather dubious. For convenience, I have called 
this the 'Ambigu model'.  
In the patch 1Spectrum-3Timbres.pch2 the two observation models 
Ambigu and Tubular Bells were transposed for comparison so that the 
pitch is equal to that of the Glockenspiel model. Why the size of the 
tubular bells mostly don’t exceed a maximum one and a half octave 
will be clear now. If you increase the size, the instrument will 
inevitably transform itself in timbre and transpose itself in terms of 
pitch. 
 
Ernst Bonis 
 
This article was originally published in Dutch as ‘Bedriegelijke boventonen’ in 
Interface 118 May 2008. 
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